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A constant outward radial thrust acceleration can be used to reduce the

radius of a circular orbit of specified period. Heliocentric circular

orbits are designed to match the orbital period of Earth or Mars for
various radial thrust accelerations and are defined as synchronous

orbits. Minimum-time solar sail orbit transfers to these synchronous

heliocentric orbits are presented.

INTRODUCTION

The concept of using a solar sail as a means of propulsion for a space vehicle was first introduced
in 1924 by two Russian space pioneers, Konstantin Tsiolkovsky and Fridrickh Tsander. In their theory, the
transfer of momentum that occurs when a photon of light bounces off the reflective surface of a solar sail

should provide a mechanism for space propulsion. The effect of this sunlight pressure on the orbital

motion of interplanetary spacecraft was first taken into account in 1974 with the Mariner 10 missions to
Mercury and Venus. Solar panels on the Mariner 10 spacecraft when tilted at various angles to the sun
experienced differences in sunlight pressure, thus inducing rotational motion of the spacecraft.

In the late 1970's, the NASA Jet Propulsion Laboratory (JPL) initiated a team effort to study the

feasibility of using a solar sail vehicle to rendezvous with Halley's Comet during its 1986 approach to the
inner solar system. Due to the large energy requirements of the mission, both solar sails and solar electric

propulsion were studied as feasible spacecraft propulsion techniques. Solar electric propulsion was
ultimately chosen for the mission since solar sails were deemed to not be a sufficiently mature technology

for a near term space mission. In the end, the U.S. Halley mission was cancelled and research efforts
directed at producing an operational solar sail vehicle for NASA were halted in 1981.

In an era of tight space mission budgets, solar sail spacecraft fit NASA's "better, faster, cheaper"

paradigm and look even more promising than they did in the 1970's. New materials are accessible today
for producing extremely thin, strong sheets of sail material. The booms and struts that stretch out and
maintain a sail's shape could be made from composite material that is currently available. Also,

micro'satellite technology allows the solar sail payload to have a smaller mass. Together, these new
technologies add up to feasible solar sail missions.
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Thispaperconsidersthe mission of transferring between a circular orbit of one astronomical unit
(AU) and a circular synchronous orbit in minimum time using solar sail propulsion. A synchronous orbit is

an orbit that matches the period of a celestial body but at a different orbit radius than would exist for an
non-thrusting spacecraft in a two body system. The ability of a solar sail to provide a constant radial thrust

allows the existence of these synchronous orbits and will be described in more detail in a later section. 3

Several investigations into solar sail optimal flight paths have been made in the past. Tsu 4 and London 5
performed pioneering work using logarithmic spirals to approximate the motion of the sail. Kelley 6,
Cavoti 7, Zhukov and Lebedev 8 and Jayaraman 9 have formulated interplanetary minimum-time transfers for

solar sail spacecraft using a variety of optimization approaches. Following the methodology of Zhukov and

Lebedev, Sauer j° used calculus-of-variations to formulate the necessary conditions for interplanetary

transfers. Sauer however modeled three-dimensional transfers and included inclined, elliptic orbits for the
launch and target planets. In this paper, calculus-of-variations is used to derive the first-order necessary

conditions for a locally optimal minimum-time transfer using solar sail propulsion. The transfers are
heliocentric beginning in a circular orbit of one AU and terminating in circular orbits that have the same

period of the Earth or Mars. The transfers that will be presented are planar but the analysis could be
generalized to three-dimensional transfers if desired.

SOLAR SAIL EQUATIONS OF MOTION

To simplify the analysis, two-dimensional planar transfers were modeled using the polar

coordinate system shown in Figure 1. In the equations of motion, the symbol r denotes the distance from

the sun to the solar sail center of mass, t_ is the transfer angle between a reference axis and the sun-sail

line, u is the radial velocity, v is the tangential velocity, and 0 is the sail control angle between the sun-

sail line and the sail normal measured positive in the counter-clockwise direction from the sun-sail line.

The force F generated by the sail depends on the total surface area S, the solar intensity W at one

AU, the speed of light c, r, and the sail control angle 0 ._1 The acceleration is given below where m is the
spacecraft mass.

F/m = 2WS cos 20/cr 2 = k cos 20 / r 2 (1)

As a further simplification, the constants W, S, and c have been combined into the characteristic

acceleration constant denoted by k = 2WS/c. Equation (1) shows that the constant k is the maximum

acceleration that the sail can produce at a reference distance unit of 1 AU.
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Figure I. Coordinate System



Thevariable._is used for the state vector and is defined in Eq. (2). The equations of motion for
the solar sail in a two-body heliocentric system can then be written as shown in Eq. (3).

[xlX2 =

X 3

X 4 (2)

I!]F ]v/r

_= = v%-_/; +kcos_O/r'- (3)
L-"_/_+ksinOcos_O/r2

In this paper, heliocentric

therefore p_,,,, = 1 AU3/TU 2 . Equations

formulation of the equations of motion.

transfers are modeled and canonical units used,

(2) and (3) are then combined to obtain the state space

_"I =X3

_2 = x4/xl

_ =-t/x? +kcos_olx?+x_Ix,
'_4 = --X3X4/XI +k sin0 cos 2 O/x?

(4a-d)

OPTIMAL CONTROL PROBLEM

Optimal control theory _2 will be introduced and then applied to the problem of minimum-time

transfer to a specified orbit for a solar sail. The nonlinear differential equation describing the motion of the

solar sail (Eq. (4)) can be written compactly as shown in Eq. (5).

x = ][_(t),0-(t), t] _(t o) given, t o _<t < t/ (5)

In Eq. (5), the state parameters ._(t) are determined by the control parameters, 0-'(t) where the dot specifies

differentiation with respect to time, t. The general optimal control problem is then to determine the

controls O-(t) that will minimize a performance index J that is specific to the problem being solved.

The performance index J is a scalar representation of the dynamic system's cost. Cost for achieving
spacecraft orbits using impulsive propulsion systems can typically be defined by the amount of velocity

change Av or equivalently by the amount of fuel expended. For the case of the solar sail in which
continuous thrust with no consumption of propellant is possible, the cost being minimized is the time of
flight.

A general performance index Jcan be written in the form;

t/-

]+
I 0

(6)



In theabovecostfimction,rl representsthescalarterminalcostandI represents the integral cost

accumulated over a particular time interval. For the transfer of a solar sail to a specified orbit in minimum

time, I = 0 , rl = t/, and therefore the cost function being minimized is the time of flight t j-. An

equivalent formulation is to define I=1 and rl = 0. The Hamiltonian can then be written as;

H = I + i-rx = _-'rx (7)

Here the variable _ refers to the vector of Lagrange multipliers, also known as the vector of adjoint

variables. The Hamiltonian for this problem, using Eqs. (4a-d) and four Lagrange multipliers is;

H=_.l(u)+_,2(v/r)+_.s(v2/r-l/r2+kcosSO/r2)+L4(-uv/r+ksinOcos20/r 2) (8)

Using the calculus-of-variations optimization technique, a set of necessary conditions can be

determined. The solution to these necessary conditions provides the 0--(t) that produces a stationary value

of the performance index f2. These first-order necessary conditions are the Euler-Lagrange equations. The

first of these is the already stated differential equations of motion with the associated boundary condition
from Eq. (5). The second is the differential equation governing the Lagrange multipliers with the

associated boundary condition at the final time. These are

_ r =-O H / c3_

_TJt/ =(C_rl/C3.,_+f-Tc3_'/C_-_)t I
(9)

In Eq. (9) _T t/ denotes that the Lagrange multiplier is evaluated at the final time, as is the right hand

side of(9). Also in Eq. (9), W is the vector of specified terminal constraints and _ is an additional set
of constant multipliers. For transfers to circular synchronous orbits, the three chosen terminal constraints

Wi,W2,hv3 are shown in Eq. (10). The values for r_p_._,,i and v,r_,_jj_a will be defined in later sections to

correspond to desired terminal circular orbits.

= u.r - 0

V f -- "Vspecifie d

(10)

Since there are four states in the x" vector, there are four differential equations for _" according to

Eqs. (8) and (9).

_. I =-OH/_r =-2_. 3/r 3 +_.3v 2/r 2 +2k)_ 3 cos30/r 3 -_.4uv/r 2 +2kL 4 sin0 cos20/r 3 +_.2v/r 2

(I la)

k _(t/)= 0rl/Or/+v_c9 hu_/c_rf +V2G_tlJ2 /Or r +V3G_triJ3 /c_r s =v_ =constant

2 = ,c3 H/_ qb= 0

(I Ib)

(12a)



(12b)

By integration, it is seen that _ 2 = constant and by enforcing the boundary condition k 2 = 0 for all

time. This Lagrange multiplier can be eliminated from the problem formulation if desired leading to a
..L."

reduced order problem. The third and fourth differential equations for X are

_3 = -8 H/_ u = _.4vZr - _'1

=v2=constant

_'4 = -c3 H� O v = - 2)_3v / r + _.4ll / r

_.4(If)=_71q/OVf +Vl_tXtJ, /O_f +V2_t{'J2 /G% f -I-V3_UtI3 /OFf =V 3 =constant

(13a)

(13b)

(14a)

(14b)

The third Euler-Lagrange condition is that the terminal boundary conditions specified in Eq. (10) must be
satisfied. Since the final transfer time is unknown and free to be determined in a time open problem, the
fourth Euler-Lagrange equation, the so called transversality condition, applies

[c_q/c_t +n]l,z =0 (15)

In a time open formulation, Orl /O tf = 1, which leads to the transversality condition on the Hamiltonian at

the final time of H (t t ) + ! = O.

The optimality condition provides a formula for the one control 0.

8H/c _0=0 (16)

Applying Eq. (16) to the Hamiltonian given in Eq. (8) yields;

-3_.3kcos20 sin0/r 2 + ),.4k(-2cos0 sin20 +COS30)/r 2 = 0 (17)

After dividing Eq. (17) through by kcos30/r 2 aquadratic in tan0 results.

-2L 4 tan20 -3X 3 tan0 +X 4 =0 (18)

Equation (! 8) can be solved using the quadratic formula to yield the condition for the optimal control

0 = tan -_ {+[(9X _+ 8L 4) lz2 -3k3]142_4}

(19)

The control angle in Eq. (19) is uniquely determined by X 3 and ;k 4 • The sign ambiguity of the square

root term in the numerator was determined to be strictly positive by examining all possibilities of the signs

of k 3 and k 4 along with the resultant quadrant where 0 must reside. _3



Summarizing, a solar sail minimum-time orbit transfer can be formulated as a two-point

boundary-value problem defined by the eight differential equations and associated boundary conditions
Eqs. (4) and (I I) through (14) along with the control in Eq. (19). A FORTRAN algorithm was constructed

Io solve this two point boundary value problem. Results obtained from this software were compared with

published results as described in the next section.

TEST CASES

Ma rs

In order to validate the computational methodology used to solve the solar sail two point boundary

value problem, a minimum time solar sail transfer from Earth orbit, r = 1.0 AU, to a Martian orbit, r =
1.524 AU that is described in Reference 8 was generated. The vector of terminal constraints shown in Eq.

(10) was driven to zero (within a prescribed tolerance) where r.f, uy, and vf are the final values of the

radius, radial velocity, and tangential velocity and r_pec and v_p_c are the specified values of radius and

tangential velocity for the desired orbit. For the transfer to a Martian orbit, the values r_p,c =1.524 AU and

v_r_c = l/l.x/T_- were used. A characteristic acceleration of k = 2 mm/s 2 was used to correspond with

the results given in Reference 8.

A multi-dimensional shooting method was used to solve the two-point boundary value problem.

Initial guesses for the transfer time and the Lagrarige multipliers are required with this technique. The

values of a final time of 5 TU and X1 = i, _-3 = 1,and _-4 = I were used. In the previous section, the

variable X2 was shown to be zero for all time. By reinserting successive values of the initial values for the

three Lagrange multipliers, a converged solution was obtained. This method is known as the "method of

continuation". In the converged solution, the constraint vector • achieved the final desired values for r,

u, and v within a prescribed tolerance of Ix 10 -6 . This meant that the final radial velocity u was within

I x i0 -6 of its desired value of zero and thai the final tangential velocity v was within I x 10 -6 of its desired

value of l / _. Also, the final radius r was within I x 10 -6 of its desired value of 1.524 and thus within

the Mars sphere of influence (SOI) of ! 70 Mars radii. The accuracy of the final value of the transversality

constraint was also on the order of lxl0 -6 as compared to its ideal value of zero. The final transfer angle

value was allowed to vary freely. A total minimum transfer time of 324 days or 5.57 TU was obtained for a
converged solution, which compared favorably with the value of 5.54 TU from Reference 8 for transfer at a

characteristic acceleration of 2mm/s 2. Figure 2 illus.trates the control angle state history. Figure 3
illustrates the control angle at each time interval on the resultant outward spiral trajectory. The state

histories obtained essentially duplicated the solar sail Mars transfer state histories of Figures 2 and 3 of
Reference 8.
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Venus

For a time open transfer to Venus orbit, r,p_c =0.7233 AU, u/= 0, and v._p_c = 1 / _ were

used in the terminal constraint vector. A characteristic acceleration of k = 2 mm/s 2 was again used for

comparison with results from Reference 8. Lagrange multipliers corresponding to a converged solution

were obtained once again using the method of continuation. In the converged solution, the constraint

vector • achieved the final desired values for r, u, and v to within a prescribed tolerance of lx 10 -6 in a
manner similar to'how the constraints were satisfied for the Martian transfer described above. A total

minimum transfer time of 163.65 clays or 2.815 TU was obtained for a converged solution, which again
compared very favorably with the Value of 164 days from Reference 8 for transfer at a characteristic

acceleration of 2mm/s 2. Figure 4 illustrates the control angle state history. Figure 5 illustrates the

control angle at each time interval along the resultant inward spiral trajectory. The state histories obtained

essentially duplicated the solar sail Venus transfer state histories of Figures 4 and 5 of Reference 8.

The optimization software was able to achieve converged solutions for both the Earth-to-Mars and
Earth-to Venus solar sail transfers with transfer times and state histories that duplicated the results of

Reference 8, the software was consideredvalidated. Next, the software was used to investigate inward or
outward minimum time spirals from Earth to synchronous orbits of any specified radius.
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SYNCHRONOUS CIRCULAR ORBITS

The boundary conditions on the radius and velocity magnitudes for synchronous orbits will be
derived in this section. The solar sail mission statement is to determine the control profile to transfer from

a circular orbit of 1 AU to a synchronous orbit of a given period in minimum time. The sail control

authority is governed by the solar sail constant k = 2WS/c. Using Eq. (1), k can be shown to be equivalent

to the maximum acceleration that the sail can provide at 1 AU. To design a synchronous orbit, a desired

period Pa¢s_,_dfor a circular orbit is chosen and is written in terms of the radius (rs>_) and velocity (vs>_,) of
the circular synchronous orbit.

P a_._ir,.a=2rc%,,,/v_, (20)

The period Pdesiredis next related to the earth orbital period by the factor R.

R = edesired/Pe,wth (21)

Using canonical units with distance referenced to I AU, the period of the earth is P_anu = 2rt TU
and Eq. (20) and (21) are combined to yield a simple relationship between r_y, and vs_.,.

v.,_,,,= r,,,,,/e (22)

I0



Next,the constant radial acceleration that the solar sail provides at the synchronous distance must

be related with the synchronous velocity. This is done through the equations of motion by enforcing zero

radial velocity and acceleration on the synchronous orbit.

=(. - k =0 - Wr,:,,, (23)

Note that by the spacecraft thrusting in only in the outward radial direction once in the

synchronous orbit, the sail is in essence reducing the local gravitational constant, It. Finally, by combining
Eqs. (22) and (23), an expression relating the maximum sail acceleration at one AU (k) and the desired

period is determined.

%.,, = R 2/3 (1 - k) I/3 (24)

The radius of the synchronous orbit supplied by Eq. (24) is used for rs_¢incd in Eq. (10). The

velocity is specified by Eq. (22) and is set equal to vs_cin¢,J in Eq. (10). Equations (22) and (24) serve as
terminal boundary conditions for the transfers along with the sail having zero radial velocity at the end of
the transfer (u=0).

TRANSFERS TO EARTH SYNCHRONOUS ORBITS

Figure 6 is a plot of Eq. (24) for Earth synchronous orbits, i.e. R=I. Values ofk between 0-0.34

AU/TU 2 (0-2.0162 mm/s 2) are presented. This range of sail accelerations was selected due to the fact that

they are believed achievable using current technology. Figure 6 shows that as the thrust acceleration is

increased, the synchronous orbit radius moves closer to the sun. For Earth synchronous orbits v,,,=r,._,,.
The transfer times to the earth synchronous orbits decrease as the thrust acceleration increases even though
the radial difference between the initial and terminal orbits increases. Points A and B have been labeled on

Figure 6 corresponding to an acceleration of 0.006 mm/s 2 and 2 mm/s" respectively. Transfers to Earth

synchronous orbits at these two acceleration levels are presented in Figure 7. Converged solutions for
thrust levels between points A and B were obtained with a tolerance of 10 .6 as in the test cases.

11
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The transfer to an Earth synchronous orbit corresponding to a 0.006 mm/s 2 is barely

distinguishable from the circular reference orbit at 1 AU. The transfer requires 182 days, approximately
one-half of the period of the circular reference orbit. The transfer at the higher acceleration (2 mm/s 2 )

requires only 152 days to complete the transfer.

The control profiles for these two transfers are displayed in Figure 8. Each transfer shows similar

characteristics. A large slew maneuver is required to match the desired boundary conditions on the
velocity. The maneuver for the lower acceleration occurs at approximately the middle of the transfer while

the maneuver in the larger acceleration transfer is slightly delayed. Note that the control angle is always
negative corresponding to the acceleration being applied in the direction opposite to the velocity. This

control decreases the orbital energy of the spacecraft causing an inward spiral to occur.

12
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TRANSFERS TO MARS SYNCHRONOUS ORBITS

Figure 9 is a plot of Eq. (24) for Mars synchronous orbits, i.e. R=(ly 321.73d)/(ly)=l.88083. _4

Figure 9 shows that as the thrust acceleration is increased, the synchronous orbit radius moves closer to the

Earth. Also, recall that for synchronous orbits v w,=r_.v,/R. The transfer times to the Mars synchronous

orbits rapidly decrease as the thrust acceleration increases (See Figure I0) since the radial difference

between the initial and terminal orbits decreases along with the increased control authority. Points C and D

have been labeled on Figure 9 corresponding to an acceleration of 0.38 mm/s 2 and 2 mm/s 2 respectively.

Converged solutions for thrust levels between points C and D were obtained with a tolerance of 10 .6 as in

the test cases. Minimum-time transfers for characteristic accelerations less than 0.38 mm/s 2 were not

obtained due to the strict convergence requirements and the fact that the sail has less control authority and

larger energy changes than the higher acceleration cases. ,
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Figure 11 displays the trajectories corresponding to points C and D. The transfer to an Mars
synchronous orbit corresponding to a 0.38 mm/s 2 travels a transfer angle of 320 degrees and requires 429

days complete. The transfer at the higher acceleration (2 mm/s 2 ) requires only 123 days to complete the
transfer.

The control profiles for these two transfers are displayed in Figure 12. Due to the small

acceleration of point C, the angle between the sun-sail line and the sail normal is always positive (thrusting
in the positive velocity direction ) in order to increase the energy. The control angle history for point D is
quite different. Due to the larger available control, the boundary conditions are reached in minimum time

by thrusting away from the velocity direction.

CONCLUSIONS

Minimum time transfers for solar sail spacecraft to Earth and Mars synchronous heliocentric orbits
have been determined for sail accelerations that are achievable using current technology. Necessary

conditions for local optimality were derived using calculus-of-variations and boundary conditions for
synchronous circular orbits were presented. A multi-dimensional shooting method was implemented to

solve the boundary value problem. The optimization algorithm was verified on two published
interplanetary transfers and then applied to the minimum-time synchronous transfers. Solar sail spacecraft
in heliocentric Earth synchronous orbits could be used to warn spacecraft of solar flare events that could

have significant effects for power generation and communication on Earth. Mars synchronous orbits would

provide locations for communication satellites with constant Earth-Mars viewing angles. Solar sail
spacecraft have a great deal of potential for advancing the state-of-the-art in spacecraft propulsion

technologies and the further exploration of the solar system.
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